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• First-order logic

– Properties, relations, functions, quantifiers, …

– Terms, sentences, axioms, theories, proofs, …

• Extensions to first-order logic

• Logical agents

– Reflex agents

– Representing change: situation calculus, frame problem

– Preferences on actions

– Goal-based agents



First-order logic

• First-order logic (FOL) models the world in terms of 

– Objects, which are things with individual identities

– Properties of objects that distinguish them from other objects

– Relations that hold among sets of objects

– Functions, which are a subset of relations where there is only one 

“value” for any given “input”

• Examples: 

– Objects: Students, lectures, companies, cars ... 

– Relations: Brother-of, bigger-than, outside, part-of, has-color, 

occurs-after, owns, visits, precedes, ... 

– Properties: blue, oval, even, large, ... 

– Functions: father-of, best-friend, second-half, one-more-than ... 



User provides

• Constant symbols, which represent individuals in the world

– Mary

– 3

– Green

• Function symbols, which map individuals to individuals

– father-of(Mary) = John

– color-of(Sky) = Blue

• Predicate symbols, which map individuals to truth values

– greater(5,3)

– green(Grass) 

– color(Grass, Green)



FOL Provides

• Variable symbols

– E.g., x, y, foo

• Connectives

– Same as in PL: not (), and (), or (), implies (), if 

and only if (biconditional )

• Quantifiers

– Universal x or  (Ax)

– Existential x or (Ex)



Sentences are built from terms and atoms

• A term (denoting a real-world individual) is a constant symbol, a 
variable symbol, or an n-place function of n terms. 

x and f(x1, ..., xn) are terms, where each xi is a term. 

A term with no variables is a ground term

• An atomic sentence (which has value true or false) is an n-place 
predicate of n terms

• A complex sentence is formed from atomic sentences connected 
by the logical connectives:

P, PQ, PQ, PQ, PQ where P and Q are sentences

• A quantified sentence adds quantifiers  and 

• A well-formed formula (wff) is a sentence containing no “free” 
variables. That is, all variables are “bound” by universal or 
existential quantifiers. 

(x)P(x,y) has x bound as a universally quantified variable, but y is free. 



Quantifiers

• Universal quantification

– (x)P(x) means that P holds for all values of x in the 
domain associated with that variable

– E.g., (x) dolphin(x)  mammal(x)

• Existential quantification

– ( x)P(x) means that P holds for some value of x in the 
domain associated with that variable

– E.g., ( x) mammal(x)  lays-eggs(x)

– Permits one to make a statement about some object 
without naming it



Quantifiers

• Universal quantifiers are often used with “implies” to form “rules”:

(x) student(x)  smart(x) means “All students are smart”

• Universal quantification is rarely used to make blanket statements 

about every individual in the world: 

(x)student(x)smart(x) means “Everyone in the world is a student and is smart”

• Existential quantifiers are usually used with “and” to specify a list of 

properties about an individual:

(x) student(x)  smart(x) means “There is a student who is smart”

• A common mistake is to represent this English sentence as the FOL 

sentence:

(x) student(x)  smart(x) 

– But what happens when there is a person who is not a student?



Quantifier Scope

• Switching the order of universal quantifiers does not change 

the meaning: 

– (x)(y)P(x,y) ↔ (y)(x) P(x,y)

• Similarly, you can switch the order of existential 

quantifiers:

– (x)(y)P(x,y) ↔ (y)(x) P(x,y)

• Switching the order of universals and existentials does

change meaning: 

– Everyone likes someone: (x)(y) likes(x,y) 

– Someone is liked by everyone: (y)(x) likes(x,y)



Connections between All and Exists

We can relate sentences involving  and 

using De Morgan’s laws:

(x) P(x) ↔ (x) P(x)

(x) P ↔ (x) P(x)

(x) P(x) ↔  (x) P(x)

(x) P(x) ↔ (x) P(x)



Quantified inference rules

• Universal instantiation

– x P(x)  P(A)

• Universal generalization

– P(A)  P(B) …  x P(x)

• Existential instantiation

– x P(x) P(F)      skolem constant F

• Existential generalization

– P(A)  x P(x)



Universal instantiation

(a.k.a. universal elimination)

• If (x) P(x) is true, then P(C) is true, where C is any

constant in the domain of x

• Example: 

(x) eats(Ziggy, x)  eats(Ziggy, IceCream)

• The variable symbol can be replaced by any ground term, 

i.e., any constant symbol or function symbol applied to 

ground terms only



Existential instantiation

(a.k.a. existential elimination)
• From (x) P(x) infer P(c)

• Example:

– (x) eats(Ziggy, x)  eats(Ziggy, Stuff)

• Note that the variable is replaced by a brand-new constant

not occurring in this or any other sentence in the KB

• Also known as skolemization; constant is a skolem 

constant

• In other words, we don’t want to accidentally draw other 

inferences about it by introducing the constant 

• Convenient to use this to reason about the unknown object, 

rather than constantly manipulating the existential quantifier



Existential generalization

(a.k.a. existential introduction)

• If P(c) is true, then (x) P(x) is inferred. 

• Example

eats(Ziggy, IceCream)  (x) eats(Ziggy, x)

• All instances of the given constant symbol are replaced by 

the new variable symbol

• Note that the variable symbol cannot already exist 

anywhere in the expression



Translating English to FOL
Every gardener likes the sun.

x gardener(x)  likes(x,Sun) 

You can fool some of the people all of the time.

x t  person(x) time(t)  can-fool(x,t)

You can fool all of the people some of the time.

x t (person(x)  time(t) can-fool(x,t))

x (person(x)  t (time(t) can-fool(x,t)))

All purple mushrooms are poisonous.

x (mushroom(x)  purple(x))  poisonous(x) 

No purple mushroom is poisonous.

x purple(x)  mushroom(x)  poisonous(x) 

x  (mushroom(x)  purple(x)) poisonous(x) 

There are exactly two purple mushrooms.

x y mushroom(x)  purple(x)  mushroom(y)  purple(y) ^ (x=y)  z 
(mushroom(z)  purple(z))  ((x=z)  (y=z)) 

Clinton is not tall.

tall(Clinton) 

X is above Y iff X is on directly on top of Y or there is a pile of one or more other 
objects directly on top of one another starting with X and ending with Y.

x y above(x,y) ↔ (on(x,y)  z (on(x,z)  above(z,y))) 

Equivalent

Equivalent



Monty Python and The Art of Fallacy

Cast

– Sir Bedevere the Wise, master of (odd) logic

– King Arthur

– Villager 1, witch-hunter

– Villager 2, ex-newt

– Villager 3, one-line wonder

– All, the rest of you scoundrels, mongrels, and 

nere-do-wells. 



An example from Monty Python 

by way of Russell & Norvig

• FIRST VILLAGER: We have found a witch. May we 
burn her?

• ALL: A witch! Burn her!

• BEDEVERE: Why do you think she is a witch?

• SECOND VILLAGER: She turned me into a newt.

• B: A newt?

• V2 (after looking at himself for some time): I got better.

• ALL: Burn her anyway.

• B: Quiet! Quiet! There are ways of telling whether she is a 
witch.



Example: A simple genealogy KB by FOL

• Build a small genealogy knowledge base using FOL that

– contains facts of immediate family relations (spouses, parents, etc.)

– contains definitions of more complex relations (ancestors, relatives)

– is able to answer queries about relationships between people

• Predicates:

– parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.

– spouse(x, y), husband(x, y), wife(x,y)

– ancestor(x, y), descendant(x, y)

– male(x), female(y)

– relative(x, y)

• Facts:

– husband(Joe, Mary), son(Fred, Joe)

– spouse(John, Nancy), male(John), son(Mark, Nancy)

– father(Jack, Nancy), daughter(Linda, Jack)

– daughter(Liz, Linda)

– etc.



• Rules for genealogical relations
– (x,y) parent(x, y) ↔ child (y, x)

(x,y) father(x, y) ↔ parent(x, y)  male(x) (similarly for mother(x, y))

(x,y) daughter(x, y) ↔ child(x, y)  female(x) (similarly for son(x, y))

– (x,y) husband(x, y) ↔ spouse(x, y)  male(x) (similarly for wife(x, y))

(x,y) spouse(x, y) ↔ spouse(y, x)  (spouse relation is symmetric)

– (x,y) parent(x, y)  ancestor(x, y) 

(x,y)(z) parent(x, z)  ancestor(z, y)  ancestor(x, y) 

– (x,y) descendant(x, y) ↔ ancestor(y, x) 

– (x,y)(z) ancestor(z, x)  ancestor(z, y)  relative(x, y) 

(related by common ancestry)

(x,y) spouse(x, y)  relative(x, y) (related by marriage)

(x,y)(z) relative(z, x)  relative(z, y)  relative(x, y) (transitive)

(x,y) relative(x, y) ↔ relative(y, x) (symmetric)

• Queries
– ancestor(Jack, Fred)   /* the answer is yes */

– relative(Liz, Joe)        /* the answer is yes */

– relative(Nancy,  Matthew)   

/* no answer in general, no if under closed world assumption */

– (z) ancestor(z, Fred)  ancestor(z, Liz)



Semantics of FOL

• Domain M: the set of all objects in the world (of interest)

• Interpretation I: includes

– Assign each constant to an object in M

– Define each function of n arguments as a mapping Mn => M

– Define each predicate of n arguments as a mapping Mn => {T, F}

– Therefore, every ground predicate with any instantiation will have a 

truth value

– In general there is an infinite number of interpretations because |M| is 

infinite

• Define logical connectives:  ~, ^, , =>, <=> as in PL

• Define semantics of (x) and (x)

– (x) P(x) is true iff P(x) is true under all interpretations 

– (x) P(x) is true iff P(x) is true under some interpretation 



• Model: an interpretation of a set of sentences such that every 

sentence is True

• A sentence is

– satisfiable if it is true under some interpretation

– valid if it is true under all possible interpretations

– inconsistent if there does not exist any interpretation under which the 

sentence is true

• Logical consequence: S |= X if all models of S are also 

models of X



Axioms, definitions and theorems

•Axioms are facts and rules that attempt to capture all of the 

(important) facts and concepts about a domain; axioms can 

be used to prove theorems

–Mathematicians don’t want any unnecessary (dependent) axioms –ones 

that can be derived from other axioms

–Dependent axioms can make reasoning faster, however

–Choosing a good set of axioms for a domain is a kind of design 

problem

•A definition of a predicate is of the form “p(X) ↔ …” and 

can be decomposed into two parts

–Necessary description: “p(x) …” 

–Sufficient description “p(x) …”

–Some concepts don’t have complete definitions (e.g., person(x))



More on definitions

• A necessary condition must be satisfied for a statement to be true.

• A sufficient condition, if satisfied, assures the statement’s truth.

• Duality:  “P is sufficient for Q” is the same as “Q is necessary for P.”

• Examples: define father(x, y) by parent(x, y) and male(x)

– parent(x, y) is a necessary (but not sufficient) description of 

father(x, y)

• father(x, y)  parent(x, y)

– parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not necessary) 

description of father(x, y):

father(x, y)  parent(x, y) ^ male(x) ^ age(x, 35) 

– parent(x, y) ^ male(x) is a necessary and sufficient description of 

father(x, y) 

parent(x, y) ^ male(x) ↔ father(x, y)



More on definitions

P(x)

S(x)

S(x) is a 

necessary 

condition of P(x)

(x) P(x) => S(x)

S(x)

P(x)

S(x) is a 

sufficient 

condition of P(x)

(x) P(x) <= S(x)

P(x)

S(x)

S(x) is a 

necessary and 

sufficient 

condition of P(x)

(x) P(x) <=> S(x)



Thank You


