First-Order
L_ogic

Outline

* First-order logic
— Properties, relations, functions, quantifiers, ...
— Terms, sentences, axioms, theories, proofs, ...

 Extensions to first-order logic

» Logical agents
— Reflex agents
— Representing change: situation calculus, frame problem
— Preferences on actions
— Goal-based agents

First-order logic

* First-order logic (FOL) models the world in terms of
— Objects, which are things with individual identities
— Properties of objects that distinguish them from other objects
— Relations that hold among sets of objects
— Functions, which are a subset of relations where there is only one
“value” for any given “input”
« Examples:
— Objects: Students, lectures, companies, cars ...

— Relations: Brother-of, bigger-than, outside, part-of, has-color,
occurs-after, owns, visits, precedes, ...

— Properties: blue, oval, even, large, ...
— Functions: father-of, best-friend, second-half, one-more-than ...

User provides

« Constant symbols, which represent individuals in the world
— Mary
-3
— Green

« Function symbols, which map individuals to individuals
— father-of(Mary) = John
— color-of(Sky) = Blue

 Predicate symbols, which map individuals to truth values
— greater(5,3)
— green(Grass)
— color(Grass, Green)

FOL Provides

 Variable symbols
—E.Q., X, Y, foo
« Connectives

—Same as In PL: not (=), and (A), or (v), implies (—), If
and only if (biconditional <)

« Quantifiers
— Universal Vx or (AX)
— Existential 3x or (EX)

Sentences are built from terms and atoms

« A term (denoting a real-world individual) is a constant symbol, a
variable symbol, or an n-place function of n terms.
x and f(xy, ..., X,) are terms, where each x; is a term.
A term with no variables is a ground term

« An atomic sentence (which has value true or false) is an n-place
predicate of n terms

« A complex sentence is formed from atomic sentences connected
by the logical connectives:
=P, PvQ, PAQ, P—Q, P<~Q where P and Q are sentences

« A guantified sentence adds quantifiers V and 3

« A well-formed formula (wff) is a sentence containing no “free”
variables. That 1s, all variables are “bound” by universal or
existential quantifiers.

(VX)P(x,y) has x bound as a universally quantified variable, but y is free.

Quantifiers

 Universal quantification

— (VX)P(x) means that P holds for all values of x in the
domalin associated with that variable

— E.g., (¥X) dolphin(x) — mammal(x)
 Existential quantification

— (3 X)P(x) means that P holds for some value of x in the
domalin associated with that variable

—E.g., (3 x) mammal(x) A lays-eggs(x)
— Permits one to make a statement about some object
without naming it

Quantifiers

« Universal quantifiers are often used with “implies” to form “rules’:
(VX) student(x) — smart(x) means “All students are smart”
 Universal quantification is rarely used to make blanket statements
about every individual in the world:
(VX)student(X)Asmart(x) means “Everyone in the world is a student and is smart”
 Existential quantifiers are usually used with “and” to specify a list of
properties about an individual:
(3x) student(x) A smart(x) means “There is a student who is smart”
« A common mistake is to represent this English sentence as the FOL
sentence:

(3x) student(x) — smart(x)
— But what happens when there is a person who is not a student?

Quantifier Scope

« Switching the order of universal quantifiers does not change
the meaning:

— (VX)(VY)P(X,y) < (VY)(VX) P(X)y)
 Similarly, you can switch the order of existential
quantifiers:

— (3x)@AY)P(X)y) « (3y)(3X) P(X.y)
 Switching the order of universals and existentials does
change meaning:

— Everyone likes someone: (VX)(3y) likes(x,y)
— Someone is liked by everyone: (3y)(VX) likes(x,y)

Connections between All and Exists

We can relate sentences involving vV and 3
using De Morgan’s laws:

(VX) =P(X) <> —=(3x) P(X)
—(VX) P < (IX) =P (X)

(VX) P(X) <> = (3x) —P(x)
(3X) P(X) & —(VX) =P(X)

Quantified inference rules

« Universal instantiation
— VX P(x) .. P(A)
 Universal generalization
— P(A) AP(B) YXP(X)
« Existential instantiation
— AX P(X) ..P(F) <« skolem constant F

« Existential generalization
— P(A) .. IxX P(X)

Universal instantiation
(a.k.a. universal elimination)

o If (VX) P(X) Is true, then P(C) Is true, where C Is any
constant in the domain of x
« Example:
(vX) eats(Ziggy, X) = eats(Ziggy, IceCream)

 The variable symbol can be replaced by any ground term,
1.e., any constant symbol or function symbol applied to
ground terms only

Existential instantiation
(a.k.a. existential elimination)
« From (3x) P(x) infer P(c)
« Example:
— (3x) eats(Ziggy, x) — eats(Ziggy, Stuff)

 Note that the variable is replaced by a brand-new constant
not occurring in this or any other sentence in the KB

« Also known as skolemization: constant is a skolem
constant

* In other words, we don’t want to accidentally draw other
Inferences about it by introducing the constant

« Convenient to use this to reason about the unknown object,
rather than constantly manipulating the existential quantifier

Existential generalization
(a.k.a. existential introduction)

« If P(c) Is true, then (3x) P(x) Is inferred.
« Example

eats(Ziggy, lceCream) = (3x) eats(Ziggy, X)

« All instances of the given constant symbol are replaced by
the new variable symbol

 Note that the variable symbol cannot already exist
anywhere in the expression

Translating English to FOL

Every gardener likes the sun.
vx gardener(x) — likes(x,Sun)
You can fool some of the people all of the time.
dx Vt person(x) atime(t) — can-fool(x,t)
You can fool all of the people some of the time.
vx 3t (person(x) — time(t) Acan-fool(x,t)) «—
vx (person(x) — 3t (time(t) Acan-fool(x,t))) <«
All purple mushrooms are poisonous.
VX (mushroom(x) A purple(x)) — poisonous(X)
No purple mushroom is poisonous.
—3x purple(x) A mushroom(x) A poisonous(x) i
vx_(mushroom(x) » purple(x)) — —poisonous(x) «———— Equivalent
There are exactly two purple mushrooms.
3x Ay mushroom(x) A purple(x) A mushroom(y) A purple(y) * =(x=y) A Vz
(mushroom(z) A purple(z)) — ((x=2) v (y=2))
Clinton is not tall.
—tall(Clinton)

X is above Y iff X is on directly on top of Y or there is a pile of one or more other
objects directly on top of one another starting with X and ending with Y.

VX Vy above(x,y) < (on(x,y) v 3z (on(x,z) A above(z,y)))

Equivalent

Monty Python and The Art of Fallacy

Cast
—Sir Bedevere the Wise, master of (odd) logic
—King Arthur
—Villager 1, witch-hunter
—Villager 2, ex-newt
—Villager 3, one-line wonder

—All, the rest of you scoundrels, mongrels, and
nere-do-wells.

An example from Monty Python
by way of Russell & Norvig

 FIRST VILLAGER: We have found a witch. May we
burn her?

« ALL: A witch! Burn her!

« BEDEVERE: Why do you think she is a witch?

« SECOND VILLAGER: She turned me into a newt.

* B: A newt?

« V2 (after looking at himself for some time): | got better.
« ALL: Burn her anyway.

« B: Quiet! Quiet! There are ways of telling whether she is a
witch.

Example: A simple genealogy KB by FOL

« Build a small genealogy knowledge base using FOL that
— contains facts of immediate family relations (spouses, parents, etc.)
— contains definitions of more complex relations (ancestors, relatives)
— Is able to answer queries about relationships between people
 Predicates:
— parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
— spouse(X, y), husband(x, y), wife(x,y)
— ancestor(X, y), descendant(Xx, y)
— male(x), female(y)
— relative(x, y)
» Facts:
— husband(Joe, Mary), son(Fred, Joe)
— spouse(John, Nancy), male(John), son(Mark, Nancy)
— father(Jack, Nancy), daughter(Linda, Jack)
— daughter(Liz, Linda)
— efc.

» Rules for genealogical relations
— (VX,y) parent(x, y) < child (y, x)
(Vx,y) father(x, y) < parent(x, y) A male(x) (similarly for mother(x, y))
(VX,y) daughter(x, y) < child(x, y) A female(x) (similarly for son(x, y))
— (VX,y) husband(x, y) < spouse(X, y) A male(x) (similarly for wife(x, y))
(VX,y) spouse(X, y) <> spouse(y, X) (spouse relation is symmetric)
— (WX,y) parent(x, y) — ancestor(X, y)
(VX,y)(3z) parent(x, z) A ancestor(z, y) — ancestor(X, y)
— (VX,y) descendant(x, y) « ancestor(y, X)
— (VX,y)(3z) ancestor(z, X) A ancestor(z, y) — relative(x, y)
(related by common ancestry)
(VX,y) spouse(X, y) — relative(x, y) (related by marriage)
(VX,y)(3z) relative(z, xX) A relative(z, y) — relative(x, y) (transitive)
(Vx,y) relative(x, y) < relative(y, X) (Ssymmetric)
« Queries
— ancestor(Jack, Fred) /* the answer is yes */
— relative(Liz, Joe) [* the answer is yes */
— relative(Nancy, Matthew)
/* no answer in general, no if under closed world assumption */
— (3z) ancestor(z, Fred) A ancestor(z, Liz)

Semantics of FOL

« Domain M: the set of all objects in the world (of interest)

* Interpretation I: includes
— Assign each constant to an object in M
— Define each function of n arguments as a mapping M" => M
— Define each predicate of n arguments as a mapping M" => {T, F}

— Therefore, every ground predicate with any instantiation will have a
truth value

— In general there is an infinite number of interpretations because |M| is
Infinite
 Define logical connectives: ~, /, v, =>,<=>as in PL
» Define semantics of (Vx) and (3x)

— (¥X) P(x) Is true iff P(x) is true under all interpretations
— (3x) P(x) is true iff P(x) is true under some interpretation

» Model: an interpretation of a set of sentences such that every
sentence iIs True

« A sentence Is
— satisfiable if it is true under some interpretation
— valid if it is true under all possible interpretations
— inconsistent if there does not exist any interpretation under which the
sentence Is true
 Logical consequence: S |= X if all models of S are also
models of X

Axioms, definitions and theorems

« Axioms are facts and rules that attempt to capture all of the
(important) facts and concepts about a domain; axioms can
be used to prove theorems

—Mathematicians don’t want any unnecessary (dependent) axioms —0nes
that can be derived from other axioms

—Dependent axioms can make reasoning faster, however
—Choosing a good set of axioms for a domain is a kind of design
problem
A definition of a predicate is of the form “p(X) < ...” and
can be decomposed into two parts
—Necessary description: “p(x) — ...”
—Sufficient description “p(x) < ...”
—Some concepts don’t have complete definitions (e.g., person(x))

More on definitions

A necessary condition must be satisfied for a statement to be true.
A sufficient condition, if satisfied, assures the statement’s truth.
Duality: “P is sufficient for Q” is the same as “Q is necessary for P.”

Examples: define father(x, y) by parent(x, y) and male(x)

— parent(x, y) is a necessary (but not sufficient) description of
father(x, y)

« father(x, y) — parent(x, y)

— parent(x, y) ™ male(x) age(x, 35) is a sufficient (but not necessary)
description of father(x, y):

father(X, y) <« parent(x, y) * male(x) ™ age(x, 35)

— parent(x, y) ™ male(x) is a necessary and sufficient description of
father(x, y)

parent(x, y) * male(x) « father(x, y)

More on definitions

S(x)isa P

necessary % (VX) P(x) => S(x)
condition of P(x) S()

S(x)isa S

sufficient X (VX) P(x) <= S(x)
condition of P(x) PO

S(x)isa P

necessary and X (VX) P(x) <=>5(x)
sufficient —3(x)

condition of P(x)

Thank You

