First-Order

Logic

Outline

- First-order logic
- Properties, relations, functions, quantifiers, ...
- Terms, sentences, axioms, theories, proofs, ...
- Extensions to first-order logic
- Logical agents
- Reflex agents
- Representing change: situation calculus, frame problem
- Preferences on actions
- Goal-based agents

First-order logic

- First-order logic (FOL) models the world in terms of
- Objects, which are things with individual identities
- Properties of objects that distinguish them from other objects
- Relations that hold among sets of objects
- Functions, which are a subset of relations where there is only one "value" for any given "input"
- Examples:
- Objects: Students, lectures, companies, cars ...
- Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ...
- Functions: father-of, best-friend, second-half, one-more-than ...

User provides

- Constant symbols, which represent individuals in the world
- Mary
- 3
- Green
- Function symbols, which map individuals to individuals
- father-of(Mary) = John
- color-of(Sky) = Blue
- Predicate symbols, which map individuals to truth values
- greater $(5,3)$
- green(Grass)
- color(Grass, Green)

FOL Provides

- Variable symbols
- E.g., x, y, foo
- Connectives
- Same as in PL: not (\neg), and (\wedge), or (\vee), implies (\rightarrow), if and only if (biconditional \leftrightarrow)
- Quantifiers
- Universal $\forall \mathbf{x}$ or (Ax)
- Existential $\exists \mathbf{x}$ or (Ex)

Sentences are built from terms and atoms

- A term (denoting a real-world individual) is a constant symbol, a variable symbol, or an n-place function of n terms. x and $f\left(x_{1}, \ldots, x_{n}\right)$ are terms, where each x_{i} is a term.
A term with no variables is a ground term
- An atomic sentence (which has value true or false) is an n-place predicate of n terms
- A complex sentence is formed from atomic sentences connected by the logical connectives:
$\neg \mathrm{P}, \mathrm{P} \vee \mathrm{Q}, \mathrm{P} \wedge \mathrm{Q}, \mathrm{P} \rightarrow \mathrm{Q}, \mathrm{P} \leftrightarrow \mathrm{Q}$ where P and Q are sentences
- A quantified sentence adds quantifiers \forall and \exists
- A well-formed formula (wff) is a sentence containing no "free" variables. That is, all variables are "bound" by universal or existential quantifiers.
$(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{y})$ has x bound as a universally quantified variable, but y is free.

Quantifiers

- Universal quantification
$-(\forall x) P(x)$ means that P holds for all values of x in the domain associated with that variable
- E.g., ($\forall \mathrm{x}$) dolphin(x) \rightarrow mammal(x)
- Existential quantification
$-(\exists x) P(x)$ means that P holds for some value of x in the domain associated with that variable
- E.g., ($\exists \mathrm{x})$ mammal(x) \wedge lays-eggs(x)
- Permits one to make a statement about some object without naming it

Quantifiers

- Universal quantifiers are often used with "implies" to form "rules": $(\forall \mathrm{x})$ student $(\mathrm{x}) \rightarrow \operatorname{smart}(\mathrm{x})$ means "All students are smart"
- Universal quantification is rarely used to make blanket statements about every individual in the world:
$(\forall \mathrm{x})$ student(x$) \wedge$ smart(x) means "Everyone in the world is a student and is smart"
- Existential quantifiers are usually used with "and" to specify a list of properties about an individual:
($\exists \mathrm{x})$ student $(\mathrm{x}) \wedge \operatorname{smart}(\mathrm{x})$ means "There is a student who is smart"
- A common mistake is to represent this English sentence as the FOL sentence:
$(\exists \mathrm{x})$ student $(\mathrm{x}) \rightarrow \operatorname{smart}(\mathrm{x})$
- But what happens when there is a person who is not a student?

Quantifier Scope

- Switching the order of universal quantifiers does not change the meaning:

$$
-(\forall \mathrm{x})(\forall \mathrm{y}) \mathrm{P}(\mathrm{x}, \mathrm{y}) \leftrightarrow(\forall \mathrm{y})(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{y})
$$

- Similarly, you can switch the order of existential quantifiers:
$-(\exists x)(\exists y) P(x, y) \leftrightarrow(\exists y)(\exists x) P(x, y)$
- Switching the order of universals and existentials does change meaning:
- Everyone likes someone: $(\forall \mathrm{x})(\exists \mathrm{y})$ likes (x, y)
- Someone is liked by everyone: $(\exists \mathrm{y})(\forall \mathrm{x})$ likes (x, y)

Connections between All and Exists

We can relate sentences involving \forall and \exists using De Morgan's laws:

$$
\begin{aligned}
& (\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \leftrightarrow \neg(\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \\
& \neg(\forall \mathrm{x}) \mathrm{P} \leftrightarrow(\exists \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \\
& (\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \leftrightarrow \neg(\exists \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \\
& (\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \leftrightarrow \neg(\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

Quantified inference rules

- Universal instantiation
$-\forall \mathrm{x} P(\mathrm{x}) \therefore \mathrm{P}(\mathrm{A})$
- Universal generalization
$-\mathrm{P}(\mathrm{A}) \wedge \mathrm{P}(\mathrm{B}) \ldots \therefore \forall \mathrm{x} \mathrm{P}(\mathrm{x})$
- Existential instantiation
$-\exists \mathrm{x}$ P(x) $\therefore \mathrm{P}(\mathrm{F})$
\leftarrow skolem constant F
- Existential generalization
$-\mathrm{P}(\mathrm{A}) \therefore \exists \mathrm{x} \mathrm{P}(\mathrm{x})$

Universal instantiation (a.k.a. universal elimination)

- If $(\forall x) \mathrm{P}(\mathrm{x})$ is true, then $\mathrm{P}(\mathrm{C})$ is true, where C is any constant in the domain of x
- Example:

$$
(\forall x) \text { eats }(\text { Ziggy }, x) \Rightarrow \text { eats(Ziggy, IceCream) }
$$

- The variable symbol can be replaced by any ground term, i.e., any constant symbol or function symbol applied to ground terms only

Existential instantiation (a.k.a. existential elimination)

- From ($\exists \mathrm{x}) \mathrm{P}(\mathrm{x})$ infer $\mathrm{P}(\mathrm{c})$
- Example:
$-(\exists x)$ eats(Ziggy, $x) \rightarrow$ eats(Ziggy, Stuff)
- Note that the variable is replaced by a brand-new constant not occurring in this or any other sentence in the KB
- Also known as skolemization; constant is a skolem constant
- In other words, we don't want to accidentally draw other inferences about it by introducing the constant
- Convenient to use this to reason about the unknown object, rather than constantly manipulating the existential quantifier

Existential generalization (a.k.a. existential introduction)

- If $\mathrm{P}(\mathrm{c})$ is true, then $(\exists \mathrm{x}) \mathrm{P}(\mathrm{x})$ is inferred.
- Example

$$
\text { eats(Ziggy, IceCream }) \Rightarrow(\exists x) \text { eats(Ziggy, } x)
$$

- All instances of the given constant symbol are replaced by the new variable symbol
- Note that the variable symbol cannot already exist anywhere in the expression

Translating English to FOL

Every gardener likes the sun.
$\forall x$ gardener(x) \rightarrow likes(x, Sun)
You can fool some of the people all of the time.
$\exists \mathrm{x} \forall \mathrm{t}$ person $(\mathrm{x}) \wedge$ time $(\mathrm{t}) \rightarrow \operatorname{can}-\mathrm{fool}(\mathrm{x}, \mathrm{t})$
You can fool all of the people some of the time.
$\forall x \exists \mathrm{t}($ person $(\mathrm{x}) \rightarrow \operatorname{time}(\mathrm{t}) \wedge \operatorname{can}-$ fool $(\mathrm{x}, \mathrm{t}))$
$\forall \mathrm{x}($ person $(\mathrm{x}) \rightarrow \exists \mathrm{t}(\operatorname{time}(\mathrm{t}) \wedge \operatorname{can}-\mathrm{fool}(\mathrm{x}, \mathrm{t})))$

All purple mushrooms are poisonous.
$\forall \mathrm{x}(\operatorname{mushroom}(\mathrm{x}) \wedge$ purple $(\mathrm{x})) \rightarrow$ poisonous (x)
No purple mushroom is poisonous.
$\neg \exists \mathrm{x}$ purple $(\mathrm{x}) \wedge$ mushroom $(\mathrm{x}) \wedge$ poisonous (x)
$\forall \mathrm{x}($ mushroom $(\mathrm{x}) \wedge \operatorname{purple}(\mathrm{x})) \rightarrow \neg$ poisonous (x)

There are exactly two purple mushrooms.
$\exists \mathrm{x} \exists \mathrm{y}$ mushroom $(\mathrm{x}) \wedge \operatorname{purple}(\mathrm{x}) \wedge$ mushroom $(\mathrm{y}) \wedge \operatorname{purple}(\mathrm{y})^{\wedge} \neg(\mathrm{x}=\mathrm{y}) \wedge \forall \mathrm{z}$ $(\operatorname{mushroom}(\mathrm{z}) \wedge \operatorname{purple}(\mathrm{z})) \rightarrow((\mathrm{x}=\mathrm{z}) \vee(\mathrm{y}=\mathrm{z}))$
Clinton is not tall.
\neg tall(Clinton)
X is above Y iff X is on directly on top of Y or there is a pile of one or more other objects directly on top of one another starting with X and ending with Y.
$\forall \mathrm{x} \forall \mathrm{y}$ above $(\mathrm{x}, \mathrm{y}) \leftrightarrow(\mathrm{on}(\mathrm{x}, \mathrm{y}) \vee \exists \mathrm{z}(\mathrm{on}(\mathrm{x}, \mathrm{z}) \wedge \operatorname{above}(\mathrm{z}, \mathrm{y})))$

Monty Python and The Art of Fallacy

Cast
-Sir Bedevere the Wise, master of (odd) logic

- King Arthur
- Villager 1, witch-hunter
- Villager 2, ex-newt
- Villager 3, one-line wonder
-All, the rest of you scoundrels, mongrels, and nere-do-wells.

An example from Monty Python by way of Russell \& Norvig

- FIRST VILLAGER: We have found a witch. May we burn her?
- ALL: A witch! Burn her!
- BEDEVERE: Why do you think she is a witch?
- SECOND VILLAGER: She turned $m e$ into a newt.
- B: A newt?
- V2 (after looking at himselffor some time): I got better.
- ALL: Burn her anyway.
- B: Quiet! Quiet! There are ways of telling whether she is a witch.

Example: A simple genealogy KB by FOL

- Build a small genealogy knowledge base using FOL that
- contains facts of immediate family relations (spouses, parents, etc.)
- contains definitions of more complex relations (ancestors, relatives)
- is able to answer queries about relationships between people
- Predicates:
$-\operatorname{parent}(x, y), \operatorname{child}(x, y)$, father($x, y)$, daughter($x, y)$, etc.
- spouse(x, y), husband(x, y), wife(x, y)
- ancestor(x, y), descendant(x, y)
- male(x), female(y)
- relative(x, y)
- Facts:
- husband(Joe, Mary), son(Fred, Joe)
- spouse(John, Nancy), male(John), son(Mark, Nancy)
- father(Jack, Nancy), daughter(Linda, Jack)
- daughter(Liz, Linda)
- etc.
- Rules for genealogical relations
$-(\forall x, y) \operatorname{parent}(x, y) \leftrightarrow \operatorname{child}(y, x)$
$(\forall \mathrm{x}, \mathrm{y})$ father $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{parent}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{male}(\mathrm{x})(\operatorname{similarly}$ for mother $(\mathrm{x}, \mathrm{y}))$
$(\forall \mathrm{x}, \mathrm{y})$ daughter $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{child}(\mathrm{x}, \mathrm{y}) \wedge$ female $(\mathrm{x})(\operatorname{similarly}$ for $\operatorname{son}(\mathrm{x}, \mathrm{y}))$
$-(\forall x, y)$ husband $(x, y) \leftrightarrow \operatorname{spouse}(x, y) \wedge \operatorname{male}(x)$ (similarly for wife $(x, y))$
($\forall \mathrm{x}, \mathrm{y}) \operatorname{spouse}(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{spouse}(\mathrm{y}, \mathrm{x})$ (spouse relation is symmetric)
$-(\forall \mathrm{x}, \mathrm{y}) \operatorname{parent}(\mathrm{x}, \mathrm{y}) \rightarrow \operatorname{ancestor}(\mathrm{x}, \mathrm{y})$
$(\forall \mathrm{x}, \mathrm{y})(\exists \mathrm{z}) \operatorname{parent}(\mathrm{x}, \mathrm{z}) \wedge \operatorname{ancestor}(\mathrm{z}, \mathrm{y}) \rightarrow \operatorname{ancestor}(\mathrm{x}, \mathrm{y})$
$-(\forall \mathrm{x}, \mathrm{y})$ descendant $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{ancestor}(\mathrm{y}, \mathrm{x})$
$-(\forall \mathrm{x}, \mathrm{y})(\exists \mathrm{z})$ ancestor $(\mathrm{z}, \mathrm{x}) \wedge$ ancestor $(\mathrm{z}, \mathrm{y}) \rightarrow$ relative (x, y)
(related by common ancestry)
($\forall \mathrm{x}, \mathrm{y}$) spouse (x, y) \rightarrow relative (x, y) (related by marriage)
$(\forall \mathrm{x}, \mathrm{y})(\exists \mathrm{z})$ relative $(\mathrm{z}, \mathrm{x}) \wedge$ relative $(\mathrm{z}, \mathrm{y}) \rightarrow \operatorname{relative}(\mathrm{x}, \mathrm{y})$ (transitive)
($\forall \mathrm{x}, \mathrm{y}$) relative $(\mathrm{x}, \mathrm{y}) \leftrightarrow \operatorname{relative}(\mathrm{y}, \mathrm{x})$ (symmetric)
- Queries
- ancestor(Jack, Fred) /* the answer is yes */
- relative(Liz, Joe) /* the answer is yes */
- relative(Nancy, Matthew)
/* no answer in general, no if under closed world assumption */
$-(\exists \mathrm{z})$ ancestor $(\mathrm{z}$, Fred $) \wedge$ ancestor($\mathrm{z}, \mathrm{Liz})$

Semantics of FOL

- Domain M: the set of all objects in the world (of interest)
- Interpretation I: includes
- Assign each constant to an object in M
- Define each function of n arguments as a mapping $M^{n}=>M$
- Define each predicate of n arguments as a mapping $\mathrm{M}^{\mathrm{n}}=>\{\mathrm{T}, \mathrm{F}\}$
- Therefore, every ground predicate with any instantiation will have a truth value
- In general there is an infinite number of interpretations because $|\mathrm{M}|$ is infinite
- Define logical connectives: $\sim, \wedge, \vee,=>,\langle=>$ as in PL
- Define semantics of $(\forall x)$ and $(\exists x)$
$-(\forall x) P(x)$ is true iff $P(x)$ is true under all interpretations
$-(\exists x) P(x)$ is true iff $P(x)$ is true under some interpretation
- Model: an interpretation of a set of sentences such that every sentence is True
- A sentence is
- satisfiable if it is true under some interpretation
- valid if it is true under all possible interpretations
- inconsistent if there does not exist any interpretation under which the sentence is true
- Logical consequence: $S \mid=X$ if all models of S are also models of X

Axioms, definitions and theorems

- Axioms are facts and rules that attempt to capture all of the (important) facts and concepts about a domain; axioms can be used to prove theorems
-Mathematicians don't want any unnecessary (dependent) axioms -ones that can be derived from other axioms
-Dependent axioms can make reasoning faster, however
-Choosing a good set of axioms for a domain is a kind of design problem
- A definition of a predicate is of the form " $\mathrm{p}(\mathrm{X}) \leftrightarrow \ldots$... and can be decomposed into two parts
-Necessary description: " $p(x) \rightarrow$..."
-Sufficient description " $\mathrm{p}(\mathrm{x}) \leftarrow \ldots$..."
-Some concepts don't have complete definitions (e.g., person(x))

More on definitions

- A necessary condition must be satisfied for a statement to be true.
- A sufficient condition, if satisfied, assures the statement's truth.
- Duality: "P is sufficient for Q " is the same as "Q is necessary for P ."
- Examples: define father(x, y) by parent($\mathrm{x}, \mathrm{y})$ and male(x)
- parent(x, y) is a necessary (but not sufficient) description of father(x, y)
- father(x, y) \rightarrow parent(x, y)
$-\operatorname{parent}(x, y)^{\wedge} \operatorname{male}(x)^{\wedge} \operatorname{age}(x, 35)$ is a sufficient (but not necessary) description of father (x, y) :
father $(x, y) \leftarrow \operatorname{parent}(x, y)^{\wedge} \operatorname{male}(x)^{\wedge} \operatorname{age}(x, 35)$
$-\operatorname{parent}(x, y)^{\wedge} \operatorname{male}(x)$ is a necessary and sufficient description of father(x, y)

$$
\operatorname{parent}(\mathrm{x}, \mathrm{y})^{\wedge} \operatorname{male}(\mathrm{x}) \leftrightarrow \text { father }(\mathrm{x}, \mathrm{y})
$$

More on definitions

```
\(S(x)\) is a necessary
condition of \(\mathrm{P}(\mathrm{x})\)
```


$$
\begin{aligned}
& (\forall x) P(x)=>S(x) \\
& (\forall x) P(x)<=S(x)
\end{aligned}
$$

$S(x)$ is a necessary and sufficient
condition of $\mathrm{P}(\mathrm{x})$

$$
(\forall x) P(x)<=>S(x)
$$

Thank You

